

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES GROUP {1, -1, i, -i} CORDIAL LABELING OF SOME SPLITTING GRAPHS M.K.Karthik Chidambaram^{*1}, S.Athisayanathan² and R.Ponraj³

*1&2Department of Mathematics, St.Xavier's College, Palayamkottai 627 002, Tamil Nadu, India ³Department of Mathematics, Sri Paramakalyani College, Alwarkuruchi 627 412

ABSTRACT

Let G be a (p,q)graph and A be a group. Let $f : V(G) \rightarrow A$ be a function. The order of $a \in A$ is the least positive integer n such that $a^N = e$. We denote the order of a by o(a). For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise.

f is called a group A Cordial labeling if $|v_F(a) - v_F(b)| \le 1$ and $|e_F(0) - e_F(1)| \le 1$, where $v_F(x)$ and $e_F(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group A Cordial labeling is called a group A Cordial graph. The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v so that v is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q)

graph then S'(G) is a (2p, 3q) graph. In this paper we prove that Splitting graphs of Path P_N , Cycle C_N and Wheel W_N are group $\{1, -1, i, -i\}$ Cordial for even n

Keywords: Cordial labeling, group A Cordial labeling, group $\{1, -1, i, -i\}$ Cordial labeling, splitting graph.

AMS subject classification: 05C78

I. INTRODUCTION

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^N = e$. We denote the order of a by o(a). Cahit [3] introduced the concept of Cordial labeling.

Motivated by this, we defined group A cordial labeling and investigated some of its properties. We also defined group $\{1, -1, i, -i\}$ cordial labeling and discussed that labeling for some standard graphs [1 & 2]. The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v so that v is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then S'(G) is a (2p, 3q) graph. In this paper we discuss the labeling for Splitting graphs of some graphs. Terms not defined here are used in the sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m ad n are said to be relatively prime if (m, n) = 1. For any real number x, we denote by $\lfloor x \rfloor$, the greatest integer smaller than or equal to x and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of vertices and edges, v_1 , e_1 , v_2 , e_2 , ..., e_{N-1} , v_N , which are distinct, such that e_I is an edge joining v_I and v_{I+1} for

 $1 \leq i \leq n-1. A \text{ path on } n \text{ vertices is denoted by } P_N \text{ . A path } v_1, e_1, v_2, e_2, ..., e_{N-1}, v_N \text{ , } e_N \text{ , } v_1 \text{ is called a cycle and a cycle on } n \text{ vertices is denoted by } C_N \text{ .}$

ISSN 2348 – 8034 Impact Factor- 4.022

Given two graphs G and H , G+H is the graph with vertex set V (G)UV (H) and edge set $E(G) \cup E(H) \cup \{uv/u \in V (G), v \in V (H)\}$. A Wheel W_N is de-fined as $C_N + K_1$.

II. GROUP {1, -1, i, -i} CORDIAL GRAPHS

Definition 2.1. Let G be a (p,q)graph and consider the group

A= $\{1, -1, i, -i\}$ with multiplication. Let $f : V(G) \rightarrow A$ be a function.

For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group $\{1, -1, i, -i\}$ Cordial labeling if $|v_F(a) - v_F(b)| \le 1$ and $|e_F(0) - e_F(1)| \le 1$, where $v_F(x)$ and $e_F(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group $\{1, -1, i, -i\}$ Cordial labeling is called a group $\{1, -1, i, -i\}$ Cordial graph

Example 2.2. A simple example of a group $\{1, -1, i, -i\}$ Cordial graph is given in Fig. 2.1.

Definition 2.3. The Splitting graph of G, S'(G) is obtained from G by adding for each vertex v of G, a new vertex v' so that v' is adjacent to every vertex that is adjacent to v. Note that if G is a (p, q) graph then S'(G) is a (2p, 3q) graph.

We now investigate the group $\{1, -1, i, -i\}$ Cordial labeling of Splitting Graph of Path, Cycle and Wheel.

Theorem 2.4. The splitting graph of the path, $S'(P_N)(n \ge 1)$, is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let $u_1, u_2, ..., u_N$ be the vertices of the path P_N and let $v_1, v_2, ..., v_N$

be the newly added vertices. Number of vertices in $S'(P_N)$ is 2n and number of edges is 3(n - 1) = 3n - 3.

Case(1) : n is even.

Let n = 2k, $(k \ge 1, k \in Z)$. Each vertex label should appear k times. One edge label should appear 3k - 2 times and another should appear 3k - 1 times. Define a labeling f of S'(P_N) as follows.

Label the vertices v_1 , u_2 , u_3 , ..., u_K with 1. Label the remaining vertices arbi-trarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = 1 + (k - 1)3 = 3k - 2.

ISSN 2348 - 8034 Impact Factor- 4.022

Case(2) : n is odd.

Let n = 2k + 1, $(k \ge 1, k \in Z)$. Two vertex labels should appear k + 1 times and two should appear k times. Each edge label should appear 3k times. Define a labeling f of $S'(P_N)$ as follows.

Label the vertices v_1 , v_2 , u_3 , u_3 , u_4 , ..., u_{K+1} with 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = 1 + 2 + (k - 1)3 = 3k. Table 1 shows that f is a group $\{1, -1, i, -i\}$ cordial labeling. Illustration of

Table 1									
n	v _F (1)	v _F (-1)	v _F (i)	v _F (-i)	e _F (0)	$e_{F}(1)$			
2k	k	k	k	k	3k – 1	3k – 2			
2k + 1	k + 1	k + 1	k	k	3k	3k			

the labeling for n = 5 is given in F ig.2.2.

Theorem 2.5. The splitting graph of the cycle, $S'(C_N)(n \ge 3)$ is group

 $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let the vertices on the cycle be labelled as $u_1, u_2, ..., u_N$ and let $v_1, v_2, ..., v_N$ be the newly added vertices so that for $1 \le i \le n$, v_I is adja-

cent to the neighbours of u_I . Number of vertices in $S'(C_N)$ is 2n and number of edges is 3n.

Case(1) : n is even.

Let n = 2k, $(k \ge 2, k \in Z)$. Each vertex label should appear k times and each edge label should appear 3k times. Define a labeling f of S'(C_N) as follows. Label the vertices $v_1, u_3, u_4, ..., u_{K+1}$ with 1. Label the remaining vertices ar-bitrarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = 2 + 4 + (k - 2)3 = 3k. Case(2) : n is odd.

Let n = 2k + 1, $(k \ge 1, k \in Z)$. Two vertex labels should appear k + 1 times and two should appear k times. One edge label should appear 6k + 1 times and one should appear6k + 2 times. Define a labeling f of $S'(C_N)$ as follows.

ISSN 2348 - 8034 Impact Factor- 4.022

Label the vertices v_1 , v_2 , u_3 , u_3 , u_4 , ..., u_{K+1} with 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = 2 + 2 + (k - 1)3 = 3k + 1. Table 2 shows that f is a group $\{1, -1, i, -i\}$ cordial labeling.

Table 2									
n	$v_F(1)$	v _F (-1)	v _F (i)	v _F (-i)	$e_{F}(0)$	$e_F(1)$			
2k	k	k	k	k	3k	3k			
2k + 1	k + 1	k + 1	k	k	3k + 2	3k + 1			

Illustration of the labeling for $S'(C_5)$ is given in F ig.2.3

Theorem 2.6. The splitting graph of the Wheel $S'(W_N)(n \ge 3)$, is group

 $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let the center of the Wheel be labelled as u, the corresponding vertex of $S'(W_N)$ by v, the vertices on the rim of the Wheel by $u_1, u_2, ..., u_N$ in order and the corresponding vertices of $S'(W_N)$ by $v_1, v_2, ..., v_N$ accordingly so that for $1 \le i \le n$, v_I is adjacent to the neighbours of u_I . Also v is adjacent to the neighbours of u. Number of vertices in $S'(W_N)$ is 2n + 2 and number of edges is 6n.

Case(1) : n is odd.

ISSN 2348 - 8034 Impact Factor- 4.022

Let n = 2k + 1, $(k \ge 1, k \in Z)$. Each vertex label should appear k + 1 times and each edge label should appear 6k + 3 times. Define a labeling f of S'(W_N) as follows.

Label the vertices v_1 , u_1 , u_3 , ..., u_{2K-1} with 1. Label the remaining vertices ar-bitrarily so that k + 1 of them get label -1, k + 1 of them get label i and k + 1 of them get label -i. Number of edges with label 1 = 6k + 3.

Case(2) : n is even.

Let n = 2k, $(k \ge 2, k \in Z)$. Two vertex labels should appear k + 1 times and twoother labels should appear k times. Each edge label appears 6k times. Define a labeling f of $S'(W_N)$ as follows.

Label the vertices $u_1, u_3, ..., u_{2K-1}$ with 1. Label the remaining vertices arbi-trarily so that k of them get label -1, k + 1 of them get label -i. Number of edges with label 1 = 6k is a group $\{1, -1, i, -i\}$ cordial labeling.

Table 3								
n	v _F (1)	v _F (-1)	v _F (i)	v _F (-i)	e _F (0)	$e_{\mathrm{F}}\left(1 ight)$		
$2k + 1(k \ge 1)$	k + 1	k + 1	k + 1	k + 1	6 k + 3	6k + 3		
2k(k ≥ 2)	k	k	k + 1	k + 1	6k	6k		

Illustration of the labeling for $S'(W_4)$ is given in F ig.2.4.

Fig. 2.4

ISSN 2348 - 8034 Impact Factor- 4.022

REFERENCES

- 1. Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group {1, -1, i, -i} Cordial labeling of sum of P_N and K_N, Journal of Mathematical and Computational Science, Vol 7, No 2 (2017), 335-346
- 2. Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A cordial labeling of Graphs, accepted for publication in International Journal of Applied Mathematical Sciences.
- 3. Cahit, I., Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207
- 4. Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Jour-nal of Combinatories Dec7(2015), N o.D56.
- 5. Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972

